El desempeño matemático de los estudiantes de Ciencias biológicas y alimentarias ante situaciones variacionales
Palabras clave:
Desempeño matemático, situaciones variacionales, tareas docentesResumen
El Cálculo Diferencial en las carreras de Ciencias Biológicas y Alimentarias de la Universidad de La Habana, está justificado por la importancia de la aplicación de herramientas matemáticas en la investigación de diversos fenómenos. El insuficiente tratamiento didáctico de la variación, limita el desempeño matemático de los estudiantes en la solución de ejercicios y problemas matemáticos y de aplicación. Se realizó un estudio con carácter descriptivo exploratorio en el proceso de enseñanza aprendizaje de esta asignatura. Se aplicaron pruebas de entrada y salida a estudiantes de estas carreras, con el objetivo de analizar el desempeño matemático de los estudiantes. Para el procesamiento de los datos se utilizó el lenguaje de programación R con un enfoque al análisis estadístico. El estudio incluyo a 65 estudiantes entre las dos carreras. Se deja constancia de la introducción de tareas docentes diseñadas, se presentan las ideas que sustentan la intervención en la práctica y los buenos resultados obtenidos con su implementación.
Citas
Álvarez, A. (2011). Estrategia Didáctica para la sistematización del concepto función real de una variable real en el primer año de la carrera Ingeniería Eléctrica. (Tesis de maestría). Universidad de Camagüey. Camagüey, Cuba.
Ávila, R. (2000). Un estudio sobre la variación. (Tesis de Doctorado). Universidad Autónoma del Estado de Morelos. México.
Cantoral, R. y Farfán, R. (1998). Pensamiento y lenguaje variacional en la introducción al análisis. Épsilon, 42, 353-369.
Carlson, M. (2003). Razonamiento variacional aplicado a la modelación de eventos dinámicos: Un marco conceptual y un estudio. EMA, 8 (2), 121-156.
Dolores C. (2000). La matemática de las variables y el desarrollo del pensamiento variacional, Academia, 2(20), 9-17.
Fiallo, J., y Parada, S. E. (2012). Actividades para el desarrollo del pensamiento variacional de estudiantes que ingresan a la universidad. Universidad Industrial de Santander.
González, M. (2011). La comprensión del objeto derivada en la modalidad semipresencial. (Tesis de maestría). Universidad de Camagüey. Cuba.
Luna, J. (2013). Comprensión del concepto de la derivada como razón de cambio. CUICYT (Cultura Científica y Tecnológica), Septiembre-Diciembre, (51).
Perez, O. (2019. Desarrollo del pensamiento y lenguaje variacional en situación escolar con estudiantes universitarios. (Tesis de maestría). Universidad de Camagüey. Cuba.
Perez, R (2020). El desempeño matemático ante situaciones variacionales en el cálculo diferencial de una variable real de los estudiantes de carreras de ingeniería. (Tesis de maestría). Universidad de Camagüey. Cuba.
Rueda, N. (2015). Habilidades inherentes al pensamiento variacional de estudiantes de nuevo ingreso a la universidad. Ponencia presentada en la Conferencia Interamericana de Educación Matemática- Chiapas. México.
Ruiz, E. (2009). Diseño de estrategias de enseñanza para el concepto de variación en áreas de ingeniería. Innovación Educativa, 9(46), 27-39.
Sampedro, R (2013). Estrategia didáctica para la formación y desarrollo de la competencia gestionar el conocimiento matemático desde la dinámica del proceso docente educativo de las carreras de Ingenieria. (Tesis de doctorado). Universidad de Camagüey. Cuba.
Sánchez, L. (2013). Características y elementos del pensamiento variacional y su correspondencia con la prueba saber 11. (Tesis de grado). Licenciatura en matemática y física. Universidad del Valle, Colombia.
Vasco, C. (2010). El pensamiento variacional y la modelación matemática. Disponible en: http://pibid.mat.ufrgs.br/2009-2010/arquivos_publicacoes1/indicacoes_01
Velásquez, G. (2014). Características y elementos del pensamiento variacional en estudiantes de preuniversitario. (Tesis de grado). Licenciatura en matemática y física, Universidad del Valle, Colombia
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Marnely Soler Martinez, Reinaldo Sampedro Ruiz, María Elvira Fernández Sa
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.